

Three-phase Current Source PWM Rectifier

电力电子、智能运动、可再生能差 上海国际电力力子、可有生能源管理 International Exhibition and Conference for Power Bectronics, Intelligent Motis Renewable Energy and Energy Manas

Binghui Li, Sichuan University

10/7/2023

1

Background

Six-switch Current source rectifier

Modulation strategy

- Selective Harmonics Elimination (SHE)
 - \checkmark reduction of low-order harmonics in the AC current

 \times not suitable for dynamic performance and requires pre-computation leading to more computational complexity

• Sinusoidal Pulse Width Modulation (SPWM)

 \checkmark Low harmonic content in the output current and suitable for various PWM rectifier topologies

× Difficult to implement in digital control and may result in higher switching losses

- The Space Vector Pulse Width Modulation (SVPWM)
 - \checkmark More efficient utilization of DC bus voltage
 - ✓ Easy to implement and control

Modulation strategy

- Selective Harmonics Elimination (SHE)

 ✓ reduction of low-order harmonics in the AC current
 × not suitable for dynamic performance and requires pre-computation leading to more computational complexity
- Sinusoidal Pulse Width Modulation (SPWM)

 \checkmark Low harmonic content in the output current and suitable for various PWM rectifier topologies

× Difficult to implement in digital control and may result in higher switching losses

- The Space Vector Pulse Width Modulation (SVPWM)
 - \checkmark More efficient utilization of DC bus voltage
 - ✓ Easy to implement and control

Modulation strategy

- Selective Harmonics Elimination (SHE)
 - \checkmark reduction of low-order harmonics in the AC current

 \times not suitable for dynamic performance and requires pre-computation leading to more computational complexity

• Sinusoidal Pulse Width Modulation (SPWM)

 \checkmark Low harmonic content in the output current and suitable for various PWM rectifier topologies

× Difficult to implement in digital control and may result in higher switching losses

- The Space Vector Pulse Width Modulation (SVPWM)
 - \checkmark More efficient utilization of DC bus voltage
 - \checkmark Easy to implement and control

SVPWM enjoys widespread applications

The Space Vector Pulse Width modulation (Traditional 6-sector)

✓ More efficient utilization of DC bus voltage

Sector division for 6-sector SVPWM in input voltage

Sector division in space vector plane

10/7/2023

Sector

7

The Space Vector Pulse Width Modulation (12-sector) •

✓ Lower switching losses

✓ **Reduce** inductance current ripple

Sector division for 6-sector SVPWM in input voltage

Phase angle (rad)

12-sector modulation exhibits superior performance

Sector division in space vector plane

SVPWM in CSR

Hardware factors Modulation factors

Input current waveforms

- Affect the input current harmonics^[1]
- Reduce the efficiency of the rectifier ^[1]
- Exerts influence on the stability of the system^[2]

[1] T. Nussbaumer and J. W. Kolar, "Improving mains current quality forthree-phase three-switch buck-type pwm rectifiers," IEEE Transactionson Power Electronics, vol. 21, DOI 10.1109/TPEL.2006.876856, no. 4, pp. 967–973, 2006.

[2] L. Schrittwieser, J. W. Kolar, and T. B. Soeiro, "Novel swiss recti fier modulation scheme preventing input current distortions at sector boundaries," IEEE Transactions on Power Electronics, vol. 32, DOI 10.1109/TPEL.2016.2609935, no. 7, pp. 5771–5785, 2017.

Hardware factors Modulation factors

• Time delays of digital control^[3]

Sliding intersections of the input filter capacitor voltages ^[4]

Hardware-induced distortions effectively suppressed

[3] Q. Chen, J. Xu, Z. Tao, H. Ma and C. Chen, "Analysis of Sector Update Delay and Its Effect on Digital Control Three-Phase Six-Switch Buck PFC Converters With Wide AC Input Frequency," in IEEE Transactions on Power Electronics, vol. 36, no. 1, pp. 931-946, Jan. 2021, doi: 10.1109/TPEL.2020.2999360.

10/7/2023

[4] T. Nussbaumer and J. W. Kolar, "Improving mains current quality forthree-phase three-switch buck-type pwm rectifiers," IEEE Transactionson Power Electronics, vol. 21, DOI 10.1109/TPEL.2006.876856, no. 4, pp. 967–973, 2006.

10/7/2023

The origin of irregular pulses remains undetermined

[5] M. I. Haq, A. H. Hanan, A. Qadeer, B. Salimov, M. I. Younas, and I. M. Talha, "Design and implementation of an efficient single stage three phase ac-dc buck converter for hybrid vehicle charging," in 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), DOI 10.1109/EI250167.2020.9346944, pp. 2930–2935, 2020.

Duty cycles uniform near sector boundary

$$\Delta D_a = \frac{\Box t}{T_s}$$

Duty cycles change abruptly at sector boundary

The variation in duty cycle is depending on the sector switching point's position.

- Applying compensation to irregular pulses can mitigate current distortion
- Increasing the switching frequency can mitigate current distortion ^[6]

[6] M. I. Haq, A. H. Hanan, A. Qadeer, B. Salimov, M. I. Younas, and I. M. Talha, "Design and implementation of an efficient single stage three phase ac-dc buck converter for hybrid vehicle charging," in 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), DOI 10.1109/EI250167.2020.9346944, pp. 2930–2935, 2020.

Duty cycle abrupt variation

Only one effective vector is applied

No irregular pulses

Transit smoothly in large sector switches

Simulation

Phase(s)

When the carrier frequency and position are fixed Δt exhibits periodic variation at each sector boundary

The degree of current distortion demonstrates corresponding periodic variation

Relationship between the degree of current distortion duty cycle variation, and Δt

The simulation results validate the theoretical analysis

- Investigates the cause of current distortion, which arises from irregular pulses (resulting from the difference between carrier and sector switching points' positions)
- Explains the periodic variation in the degree of current distortion

 Provides an explanation for why current distortion occurs only when transitioning from even to odd sectors

Binghui Li, Sichuan University